Nonvanishing modulo ℓof Fourier coefficients of Jacobi forms

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonvanishing modulo of Fourier Coefficients of Half-integral Weight Modular Forms

1. Introduction. Let k be an integer and N be a positive integer divisible by 4. If is a prime, denote by v a continuation of the usual-adic valuation on Q to a fixed algebraic closure. Let f be a modular form of weight k + 1/2 with respect to 0 (N) and Nebentypus character χ which has integral algebraic Fourier coefficients a(n), and put v (f) = inf n v (a(n)). Suppose that f is a common eigen...

متن کامل

Fourier Coefficients of Half - Integral Weight Modular Forms modulo `

S. Chowla conjectured that every prime p has the property that there are infinitely many imaginary quadratic fields whose class number is not a multiple of p. Gauss’ genus theory guarantees the existence of infinitely many such fields when p = 2, and the work of Davenport and Heilbronn [D-H] suffices for the prime p = 3. In addition, the DavenportHeilbronn result demonstrates that a positive pr...

متن کامل

Fourier Coefficients of Modular Forms

These notes describe some conjectures and results related to the distribution of Fourier coefficients of modular forms. This is a rough draft and these notes should forever be considered incomplete.

متن کامل

On the Fourier expansions of Jacobi forms

We use the relationship between Jacobi forms and vector-valued modular forms to study the Fourier expansions of Jacobi forms of indexes p, p2, and pq for distinct odd primes p, q. Specifically, we show that for such indexes, a Jacobi form is uniquely determined by one of the associated components of the vector-valued modular form. However, in the case of indexes of the form pq or p2, there are ...

متن کامل

Exact Formulas for Coefficients of Jacobi Forms

In previous work, we introduced harmonic Maass-Jacobi forms. The space of such forms includes the classical Jacobi forms and certain Maass-Jacobi-Poincaré series, as well as Zwegers’ real-analytic Jacobi forms, which play an important role in the study of mock theta functions and related objects. Harmonic Maass-Jacobi forms decompose naturally into holomorphic and non-holomorphic parts. In this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Research in Number Theory

سال: 2016

ISSN: 2363-9555

DOI: 10.1007/s40993-015-0035-1